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     1. Introduction 
 
     The Navier–Stokes equations (NSE) are given  by                 
                                               
                                              2gradF p u uρ − + µ∇ = ρ

r r r& &&                                          (1) 
 
with such equation is called a continuity equation for incompressible             
fluids [1, p. 174] 
 

                                              div 0yx z
uu uu

x y z
∂∂ ∂

= + + =
∂ ∂ ∂

&& &r& . 

 
Here, F

r
-   vector of a given, externally applied force (e.g. gravity), - pressure, 

-  velocity vector, - acceleration vector, 

p

u /u du dt= ρ -  density, µ - viscosity, 
- Laplace operator. 2∇

     We now consider two possible approaches of an exact NSE transformation. 

 1

http://www.claymath.org/millennium/Navier-Stokes_Equations/navierstokes.pdf
http://terrytao.wordpress.com/author/teorth/
http://terrytao.wordpress.com/2007/03/18/why-global-regularity-for-navier-stokes-is-hard/
http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations


     First   approach. We can eliminate the pressure   by taking an operator  
(alternative notation curl )    of both sides of equations (1). In this case equations 
(1) reduce to the    

p rot

Vorticity  transport equations. In two dimensions (2D), these 
equations are well known   [2, p. 531; 3, p. 74; 4, p. 321]  
                                 

                                    2 , 2 rot ,d u
dt
Ω µ

ν∇ Ω = Ω = ν =
ρ

r& .                                      (2) 

      
     In three dimensions (3D), it is known for a long time that  Vorticity  transport 
equations  have additional  terms [2, p. 531; 4, p. 294]  
 

                                                2 ( ) du
dt
Ω

ν∇ Ω+ Ω⋅∇ =
r& .                                        (2*) 

 
However, why 1D, 2D and 3D Navier - Stokes equations in vector form are 
identical?  In that case, probably, the vorticity transport equations must be identical 
too.  But this сonjecture requires the proof. We can show that 3D vorticity 
transport equations  look like (2). 
     Second   approach. After taking an operator div  of both sides of equations (1)  
the NSE   becomes  [5, p. 74] 
 
                              2div divgrad div divF p uρ − + µ∇ = ρ

r
ur r& &&

p

.                                (1*)             
                                        
Here, , 2 div 0uµ∇ =

r& 2divgrad p =∇  [6, p. 171]. Therefore equation (1*) can            
be written as 
                                                                                                  
                                                2 div( )p u F∇ = −ρ −

rr&& .                                          (1**)             
           
Authors of [5] has obtained equation (1**) if 0F =

r
 and ur& ( ) is a given function. 

However these authors could not prolong transformation because they did not 
consider such analogy [1, p. 107; 7, p. 329].  

ur&&

 

                          o o

1 1 (( ) div , divd Vd V u
V V d

)
t
δ

ε = δ = ε = =
δ δ

rr &&u .                                   (3) 

Here, - volume deformation,   oε
ru - infinitesimal    displacement    vector (ur - 

any displacement vector), -velocity of volume deformation.  By analogy, the   
acceleration divergence  can be written as (

oε&

divur&& oε&& - acceleration of volume 
deformation)   

                                               
2

o 2

1 ( ) divd V u
V dt

δ
ε = =

δ
r&&&& .                                                   (3*)                
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     The concept “acceleration divergence” does not meet in scientific publications.  
At the same time, the concepts div ru   and divur&  are fundamental in continuum 
mechanics, vector calculus, etc.   However, this optimistic сonjecture  o divuε =

r&&&&  
requires the proof.  Such proof received by several alternative methods. Here we 
propose the simplest method which allows to implement both above approaches. 

      
   
    2. Transformation of 3D vorticity transport equations  

     Let's consider the expressions 2 roti i uΩ =
r&&   which can be written            

in  a  general form  
 

               rot , rot , roty yz x z
x y z

u uu u uu u u
y z z x x

∂ ∂∂ ∂ ∂
= − = − = −
∂ ∂ ∂ ∂ ∂ ∂

&& &&&& && && &&r r r&& && && xu
y

∂                    (4)  

 
After let's consider the expression of one component ro .  Each accelerations 
vector components can be represented in such expanded form  [1, p. 39]                               

t x ur&&

                                 

                                

,

,

.

x x x x
x x y

y y y y
y x y

z z z z
z x y

du u u u uu u u
dt t x y z

du u u u u
u u u

dt t x y z
du u u u uu u u
dt t x y z

x
z

y
z

z
z

u

u

u

∂ ∂ ∂ ∂
= = + + +

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= = + + +
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= = + + +
∂ ∂ ∂ ∂

& & & & &
&& & & &

& & & & &
&& & & &

& & & & &
&& & & &                                

 
Let's differentiate the components   ,z yu u&& &&

 

           

2 2 2 2

2

2

,

z z z z z
x y z

yz z x z z z z z
x y z

y y y y y
x y z

u u u u uu u u
y y t x y z

uu u u u u u u uu u u
y t y x y x y y y y z y z

u u u u u
u u u

z z t x y z

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= + + + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂⎛ ⎞∂
= + + + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂
=

&& & & & &
& & &

&& & & & & & & &
& & &

&& & & & &
& & &

&

zu&

2 2 2

2
.y y y y y y yx z

x y z

u u u u u u uu uu u u
z t z x z x z y z y z z z

∂ ∂ ∂ ∂ ∂ ∂∂ ∂
+ + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

& & & & & && &
& & & yu∂ &

          (5) 

                                                                                                                        
The difference between these expressions can be represented as 
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1 rot
2

1 .
2

x x x
x x x y z

y yz x z x
x x

u u u u
t x y z

u uu u u u
y z y x z x

x∂Ω ∂Ω ∂Ω ∂Ω
=Ω = + + + +

∂ ∂ ∂ ∂

∂ ∂⎛∂ ∂ ∂ ∂
+Ω +Ω + −⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

r&& & & &

& && & & & ⎞
⎟

z ur

                            (5*) 

 
Other expressions ( ) can be written by analogy.  rot , roty ur&& &&

          For 2D flow . Therefore  0xu =&

 

                                          1 rot div .
2

i
i i i

du
dt

uΩ
=Ω = +Ω

r r&& &                                     (5**) 

 

Two  terms in  brackets of (5*), probably, can be written as x
x

u
x

∂
Ω

∂
&

 . In this case 

last three terms of (5*) can be represented as . However, this hypothesis  divx uΩ
requires the proof. 
 
  
     2.1. Hypothesis proof   
      
     To prove expressions (3*) and (5**) we use partial derivatives of a composite 
function, which can be given any number of auxiliary variables [8, p. 644]. Let 

 be a composite function. Let's fix a time ( , , , )u u x y z t=
r r& & =t t . Suppose the 
velocity vector  can be ( , , , )u u x y z t=

r r& & represented by one auxiliary variable 
( , , )x y zς = ς   as . We take into account that basic properties of the 

derivatives are maintained for the vectors  [6, p. 79; 8, p. 516]. Then  
( )u u= ς

r r& &

 

                                                   ,( , , )i
i i

u u x x y z
x x
∂ ∂ ∂ς

= =
∂ ∂ς ∂

r r& &
.                                    (6) 

 

     Formulas (6) can be written explicitly concerning a common factor u∂
∂ς

r&
. This 

factor can be deleted.  As a result we have 
 

                                            i

i j

u u x

jx x x
∂ ∂ ∂ς ∂

=
∂ ∂ ∂ς ∂

r r& &
 .                                                       (7) 

 
In  component form formulas (7) look like  
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             , ,y yx x i i z z

i j j i j j i j

u uu u x x u u i

j

x
x x x x x x x x

∂ ∂∂ ∂ ∂ς ∂ ∂ς ∂ ∂ ∂ ∂ς ∂
= = =

∂ ∂ ∂ς ∂ ∂ ∂ ∂ς ∂ ∂ ∂ ∂ς ∂

& && & & &

x
                          (8) 

     Relations (8) can be written explicitly concerning a common factor i

j

x
x

∂ς ∂
∂ς ∂

.    

This factor can be deleted, if we will equate right-hand sides of these transformed 
expressions. Therefore 
 

             , ,y y y yx x x z x z z

i j j i i j j i i j j

u u u uu u u u u u u z

i

u
x x x x x x x x x x x
∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂

= = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

& & & && & & & & & &

x
∂ &  .                  (8*) 

                             
    Now we must to prove the representation possibility  ( )i iu u=& & ς . Such proof can 
be obtained from the vector lines equations   (streamlines)  [7, p. 318; 9, p. 155] 
                                                  

                                                 
x y z

dx dy dz d
u u u

= = =
& & &

ς .                                                (9) 

 
Here  the  symbols  used to present differentials for fix d =t t .  
    Equations (9) can now be written in the form of integrals  
 

                                     

1 ( , , , ),

1 ( , , , ),

1 ( , , , ).

ς ς

ς ς

ς ς

= + ⇒ =

= + ⇒ =

= + ⇒ =

∫

∫

∫

&

&

&

x x
x

y y
y

z z
z

dx C F x y z t
u

dy C F x y z t
u

dz C F x y z t
u

 

 
Three equivalent expressions ( , , , )ς = iF x y z t  can be consider as algebraic system 
of equations with three unknown , ,x y z . Note that t t=  is  a parameter. This 
system can be solved for , ,x y z . As a result we will obtain 

( , ), ( , ), ( , )x x t y y t z z t= = =ς ς ς . After substitution of these expressions into 
( , , , )u u x y z t=

r r& &  we will obtain ( , )ς=& &i iu u t . Therefore, for =t t  we actually      
have  ( )i iu u=& & ς .         
     Now we will check a possibility  such сonjecture for formula (5*)    
 
 

                                            yx z x
x

uu u u u
y x z x x

x
∂∂ ∂ ∂ ∂

− = Ω
∂ ∂ ∂ ∂ ∂

&& & & &
.                                     (10)            
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To prove this formula we will write relations (8*) and any equalities (implying 
from these relations)  
 

                                        

,

,

.

y y y yx x x x

i j j i

x z x z x z x z

i j j i

y yz z

i j j i

u u u uu u u u
x x x x z x x z
u u u u u u u u
x x x x y x x y
u uu u
x x x x

∂ ∂ ∂∂ ∂ ∂ ∂
= ⇒ =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= ⇒ =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂

& & & && & & &

& & & & & & & &

& && &

∂

                     (11) 

 
The equalities after sign ⇒  confirm a validity of (10). Therefore (5*) becomes 
 

     

     1 rot .
2

yx x x x x
x x x y z x

uuu u u u
t x y z x y z

∂⎛ ⎞∂Ω ∂Ω ∂Ω ∂Ω ∂ ∂
= Ω = + + + +Ω + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

&&r&& & & & zu&          (12) 

 
Thus (12) coincides with (5**).  
    The expressions for rot y ur&&  and rot z ur&&  can be written analogously.  For 

incompressible fluid we have div 0u =
r& . Therefore vorticity transport equations for  

3D flow take the form (2). In scalar form we have three equations 
                                                         

                                             2 , ( , , )i
i

d i x y z
dt
Ω

ν∇ Ω = = .                                      (13)  

    
After taking an operator  of  both sides of equations (13) we obtain    div
 

                                          2 div div d
dt
Ω⎛ν∇ Ω = ⎜

⎝ ⎠
⎞
⎟  .                                              (14) 

 
Here . Therefore  div2 divrot 0uΩ = =

r&

 

                                                         div 0d
dt
Ω⎛ ⎞ =⎜ ⎟

⎝ ⎠
.                                              (15)  

      
 
     2.2. Exact transformation  of (13) 
 
     Now consider two possible approaches of an exact transformation  of (13). 
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     First   approach. Let's take i
i

d
dt
Ω

Ω =  as an unknown quantity (i.e. i idtΩ = Ω∫ ).  

Then equations (13) can be written as  
 
                                        2 , ,i idt i x y zν∇ Ω =Ω = ,∫  .                                          (16) 
 
The simplifying consequence 0iΩ =  follows from equations (16) for an ideal    
fluid ( ).  0ν =
       Second  approach. Equations (13) can be written as 
 

                                      2 ,i i i
i x y zu u u

t x y
i

z
∂Ω ∂Ω ∂Ω ∂Ω

ν∇ Ω = + + +
∂ ∂ ∂ ∂

& & &                        (13*) 

 
In the case  formula for a vectors field restoration has such            
form   [9, p. 243] 

div 0u =
r&

 

                                      1 rotrot , (rot 2 )
4

uu dV
r

= =
π ∫∫∫ u Ω

r&r r& & .  

 
After substitution   into  formula (13*) we will obtain three equations for iu& iΩ . 
However  this approach, probably, is hopeless. 
 
 
      3. Exact transformation  of (1**)                                                
                                                                                                                                                  
     Let's calculate .  Then after some transformations divur&&
     

       
22 2

div div div div div

2 .

yx z
x y z

y y yx z x z x

uu uu u u u u u
x y z t x y z

u u uu u u u u
x y z y x z y z x

∂∂ ∂ ∂ ∂ ∂ ∂
= + + = + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

&&&& &&r r r r&& & & & && & &

& & && & & & & z

u u

u

+

∂

r

&
  (17)             

 
This formula can be written as 
 

                                              2div div (div )du u
dt

= + ur r r&& & &  

 
if next equality is true 
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22 2

22 (y y yx z x z x z
u u uu u u u u u u

x y z y x z y z x
∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + + + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

& & && & & & & & r&div ) .       (17*)            

 
     The realization of (17*) require next equality :  
 

                     y y y yx z x z x z x
u u u uu u u u u u u

y x z y z x x y y z x z
zu∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

& & & && & & & & & & &∂

i

.      (17**)             

 
     Let's substitute  , , , (  )i jx x y z x x= ≠   into (8*). Then  
 

                        , ,y y y yx x x z x z z
u u u uu u u u u u u zu

x y y x x z z x y z z
∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = =
y∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

& & & && & & & & & & & .           (18)             

 
This is a necessary condition for equality (17*). Therefore    if didiv 0u =

r&& v 0u =
r& . 

     Taking into account that div 0u =
r&& ,  formulas (1**) can be  conversed to            

a Poisson equation                    
 
                                                 2 divp F∇ = ρ

r
. 

 
Therefore  if 2 0p∇ = div 0F =

r
. In that case we can eliminate pressure   by 

taking  of both sides of equations (1). After these transformations            
the NSE have such form 

p
2∇

                                                
                                               ( )2 2 0.i iu u∇ µ∇ −ρ =& &&                                               (19)             
 
Using the notation                                                        

                                                        i iu u d= t∫& && ,                                                     (20)              

we find  the  new general  equations for incompressible fluid  
                    

                    2 2 20, 0, , ( 1,2,3)i ip u dt u i
⎛ ⎞ µ

∇ = ∇ ν∇ − = ν = =⎜ ⎟ ρ⎝ ⎠
∫ && && .                    (21)            

                                                                                                                                                  
     Each equation (21) include only one of four unknown functions .    
For the partial solutions of (21) it is possible to use a traditional boundary 
conditions (a boundary adhesion).  The acceleration vector , as  well as a velocity 
vector u ,  is zero on the immobile boundaries. 

, , ,x yp u u u&& && &&z

ur&&
r&
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     First important note. Note that equality (17**) can make sense only for 
. In the case   all terms  of   left-hand  side  (17*) are 

positive, and 
rot 0u ≠

r& rot 0, div 0u u=
r r& & =

2grad , 0u = ϕ ∇ ϕ =
r& . The requirements rot 0, div 0u u= =

r r& &  and (18) 
are inconsistent. The requirement rot 0u =

r&  does not allow to fulfill  even such 
traditional boundary conditions as a fluid adhesion. The situation becomes quite 
explainable if to pay attention to the following. The equations div 0u =

r&  and 
(17**), and component form of rot 0u =

r&  give the overdetermined system of 
equations [10, p. 28]. This system has five differential equations   and three 
unknown functions . In this motive we will remind also definition in           
[11 p. 26] about 

, ,x yu u u& & &z

overdetermined hydrodynamic theories if mathematical conditions 
are inconsistent. 
     For NSE solution the author of [12] considers also the overdetermined system 
of six PDE. He has replaced (without any notе) the continuity equation div 0u =

r&             
by such three PDE  
 

                                0, 0, 0yx z
uu u

x y z
∂∂ ∂

= =
∂ ∂ ∂

&& &
= . 

 
From these equations follows 
 
                                 . ( , , ), ( , , ), ( , , )x x y y z zu f y z t u f x z t u f x y t= = =& & &

 
Equations (2.1) in [12] correspond to these functions.  Probably, using this          
functions and substituting into NSE, author of [12] obtains an expression for 

.  However, such approach contradicts  ( , , , )p x y z t Official statement of the 
problem  as NSE system (1), (2) has only four equations. Besides, these additional 
conditions can break obligatory communications between components of vectors 
(or tensors). It can be checked after substitution  and  into (21). Probably, such 
check is necessary as well for solutions offered in [13]. Such checking of equations 
(2.1) in [12] is necessary because “… not any three functions 

p iu&

( , , )if x y z             
form a vector field” [2, p. 46]. These functions should satisfy equalities (8 *) 
which follow from (9). 
     Second important note. The important consequence  implies from 2 0iu∇ =&&

equations (21) for ideal fluid ( 0ν = ). This result allows to understand why the 
solutions of the Euler equations do not satisfy traditional boundary conditions (we 
should recall the property of harmonic functions about extremum).  More profound 
conclusions can be obtained if we use the representation of general solution of 
harmonic functions [14, p. 58].         
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     4. Conclusion  
 
     The well-known 3D and 2D  Vorticity  transport equations are different  (in 
vector form) [2, p. 531; 3, p. 74; 4, p. 294, 321]. In this paper we prove that 3D and 
2D equations must be identical, and therefore 3D equations can be conversed to a 
traditional form (2). 

     First important consequence 0d
dt
Ω
=   implies from equations (2) for ideal fluid 

( ). This consequence allows  the simplifying of classical solutions of 3D 
vortex motions. First of all the Helmholtz equation and theorems are subject to 
correction  [1, p. 332; 2, p. 115].  

0ν =

     Second important consequence 2 0iu∇ =&&  implies from equations (19) if 0ν = . 
In this motive Charles Fefferman (author of the Official Millennium Problem 
Description ) has noted: “…problems are also open and very important for the 
Euler equations ( ), although the Euler equation is not on the Clay Institute’s 
list of prize problems”. 

0ν =

    The precise Official statement of the problem , given by the Clay Mathematics 
Institute requires the proof of “existence and smoothness of Navier - Stokes 
solutions”. The most effective way of such proof is correct NSE transformation to 
more simple equations. The proof in such cases should not cause serious 
difficulties.  Such approach (as “Strategy 1” of three) is considered by Terence Tao  
in his blog: “…exact and explicit solutions (or at least an exact, explicit 
transformation to a significantly simpler PDE or ODE)…”[15].    Such   method 
is proposed in this article. Equations (16) and (21) are two alternatives of such 
exact, explicit transformation.  The explicit NSE solution is proposed in          
article [12]. The author of [12] considers (without notation) the overdetermined 
system of six PDE. Therefore this solution requires a checking after substitution p  
and  into (21). The abstract of this paper is published in iu& [16, p. 197-198 
(Russian)] and Ars Mathematica   (English), 
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