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Abstract:-In the Navier-Stokes equations, as well as in theory of elasticity, it is possible to eliminate Pressure. For this purpose it is necessary to take advantage of analogies of an output of the equations of classical theory of elasticity and hydromechanics. In that case second coefficient (there is hidden in expression for pressure) and the well known problem of "second viscosity" disappears. Thus the traditional defining relation between pressure and density appears redundant. In that case the equations of ideally viscous, compressible fluid  under the shape coincide with the equations of theory of elasticity. The defining relation between pressure and density can be used only for model of a visco-elastic fluid. However, such model has serious limitations.
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    1. Introduction  

     Classical dynamic equation of viscous compressible fluid (the equation of the Navier-Stokes) and in educational [1, p. 174; 2, p. 156], and in the scientific [3, p. 44, etc.] literature are usually recorded in the compact vector shape                                                                   
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-vector of unit mass force, which sometimes [3, etc.] skip; 
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-pressure, which mathematical interpretation frequently [1, 3, etc.] do not uncover; 
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 -  velocity vector; 
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 - speed-up vector; 
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- density; 
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-  Laplacian; 
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- viscosity (in a nomenclature of others  authors-coefficient of viscosity); 
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 - coefficient or in a nomenclature [3, p. 45]  second viscosity coefficient. 

     Some authors, for example, [4, p. 387] and [6, p. 66], execute a detailed output and record dynamic equation of compressible fluid in scalar shape (accessible to the analysis). 

      In this paper an object in view of the critical analysis at an output of dynamic equation of compressible fluid. Therefore we shall record these equations in the scalar shape by analogy with [4]. However, at an entry it is used others a label. Besides instead of kinematics viscosity
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, as well as in [1], we shall execute substitution
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. In that case the equations, actually borrowed from [4], becomes 
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      For transition from the equations (1) to the teared shape (1,a) it is necessary to mean 
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and accept 
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 . This rather an essential singularity is bound to such conjecture. At an output (1) some nonconventional relationship is accepted in attention [4, p. 383; 5, p. 71]. This relationship actually implies presence of two components of pressures:  
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 In the equations (1) magnitude 
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 should be implied as a component of an complete pressure 
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. Any of the quoted authors for some reason does not mention it. And only in [5, p. 72], it is specified necessity of refinement of physical sense
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      At an output (1,a) by authors [4] too it is used (2). Then accept- 
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. As a result the second component of pressure 
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 is skipped. Therefore a relationship between components of direct stresses and pressure (as a whole) becomes [4, p. 384-385]

[image: image26.wmf]33.

xxyyzz

pp

s+s+s=-=-

%

             (2,a)

For closure of system and (1), and (1,a) the continuity equation [4, p. 387] is used
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and also, on analogies to ideal fluid,    some    (usually linear) relationship between   pressure    and density is used too [3, p. 45]
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     Different way, under condition of (2,a), states an output of the Navier-Stokes equations the author [6, p. 65-67]. In [6] the final aspect of the equations, in more teared shape in comparison with (1,a), are recorded also. The author [6] too uses closing relationship by analogy with (4). In the same teared shape the Navier-Stokes equations in [7, p. 803] are recorded. At an entry of these equations a relationship (2) are  used. Under conditions of 
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 the author [7] actually comes to (2,a). The author [7] terms magnitude 
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 as coefficient of the second (bulk) viscosity. As a closing relationship, as well as in [6], the linear dependence of  type (4) is accepted.

     Defining relation for direct stresses of viscous compressible fluid record as well as in theory of elasticity [6, p. 64-65; 8, p. 144]. They look like a linear dependence between components of deviators of stresses and velocities of strains
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    2. Problem Formulation 

     Relationships (5) mean the following. The totals  of normal components of tensors in (5) do not depend on orientation of coordinates axes [4, p. 378; 9, p. 37]. Hence, pressure 
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 in equations of motion (1,a) we can express through components of direct stresses according to (2,a). At execution of the same substitution in (5) we shall gain non-uniform algebraic system from three equations with three unknown magnitudes 
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. After the solution of this system we, probably, should gain defining relation both for
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. However, addition of three first equations of system (5) leads to identity 0
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0. Trying to solve system with use Cramer rule [10, p. 15] appears unsuccessful too. All radicals are gained in the form of indefiniteness 
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. Was possibly, the following point of view was generated: for closure of system (1,a), apart from a continuity equation, the additional relationship is required [2, p. 156-157; 6, стр.67; 7, p. 804, 811; 9, p. 45-46, etc.]. This relationship is usually stated in the form of (4). We shall try to prove the following: the Navier-Stokes equations for ideally viscous compressible fluid, i.e. (1,a), together with a continuity equation, can be converted to a closed-loop system without an additional relationship.  

    3. Problem Solution
     At an output of the classical equations both in theory of elasticity, and in hydromechanics the same unclosed equations of motion (in stresses) are used. Thus, defining relation represent linear dependences between deviators of stresses and strains (an elastic medium) or of velocities strains (ideally viscous fluid). These analogies are well-known. However, the final equations of hydromechanics essentially differ from the equations of theory of elasticity. For viscous compressible fluid it is for some reason used also an additional closing relationship between density 
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 and pressure 
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. And 
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 goes into equations of motion explicitly. 

3.1. Closed-loop system of dynamic  equations of ideally viscous fluid

      In view of stated in items 1 and 2 reasons,  the equation (1,a) it is necessary to convert. As well as in theory of elasticity, pressure 
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 it is possible to eliminate. In that case gained equations    
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are recorded by analogy to equations of classical theory of elasticity after substitution in the left-hand part of migrations vectors by velocities vectors. It is necessary to consider, however, possible objection in occasion of application of expression for       coefficient  
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.     Experimental definition of  Poisson ratio analog 
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, going into this expression, in low-viscous fluids is inconveniently. In some cases 
[image: image51.wmf]n

it is possible to define only by indirect methods. Therefore in such cases, obviously, it is necessary to take advantage of expression for a bulk viscosity. This expression can be gained by analogy to expression for a bulk coefficient of elasticity
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where 
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 - direct viscosity. 

     As a result of simple transformations from (7), we shall gain 
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     For poorly compressible fluids, as well as in classical theory of elasticity, it is possible to accept 
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. Then the continuity equation can be disregarded. It will allow to simplify searching of the solution.   Instead of four traditional equations (driving and continuity) it is possible to use (quite correctly) only three of the same type equations of motion                    
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     After the solution (6,a) it is possible to consider a case 
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. It will allow to gain solution for absolutely  incompressible  liquid.

3.2.  Closed-loop  dynamic equation of               viscous,  compressible, elastic fluids
     Dynamic equations of ideally viscous compressible fluid (6,a) (hence and (1,a)) do not consider elastic properties at comprehensive  squeezing of real mediums (for example, gases). Therefore for an output of equations of motion in view of elastic properties of a fluid it is possible to take advantage with approach according to [4, p. 379; 5, p. 71]. This approach, however, has not been realized by authors [4,5]. As a result the physical sense of coefficient 
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 has remained obscure. To authors [5, p. 73] only managed to be displayed, that the second viscosity 
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 is positive magnitude. However, in this motive there are also other authoritative judgements [11, etc.].

     Let's guess, as well as authors [4,5], that components of direct stresses viscous, compressible, elastic fluid it is possible to present in the form of the total of components of two tensors: a focus globe tensor and symmetrical tensor of the second rank. Therefore 
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where 
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– elastic component; 
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- viscous component. 

     Let's guess also, as well as for the Voight  model that 
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. In the further on detailed calculations we shall try to track reasonableness of an output of the equations (1) of the elastic, compressible fluids.

     Under the conventional conjecture the elastic pressure 
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 does not depend on a direction. Therefore, 
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can be considered as some hypothetical, comprehensive pressure. At lack of the viscosity  
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 is pressure in perfect fluid. If to combine all three equations (9), we shall gain
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Now by analogy with (5) we shall record traditional relationships between components of deviators of stresses and velocities of strains for a viscous component 
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Then, by analogy of defining relation of         elasticity theory,      we  shall  record    expressions       for    
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 In view of (12), relationships (9) and (10) become
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- analog of bulk viscosity,    according to (7).

     For shearing stresses, as well as in [4, p. 384], obviously, it is necessary to accept defining relation in the form 
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     Let's    take    advantage by expression of the bulk viscosity 
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 in (13). Then the coefficient 
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 can be expressed through 
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 according to (8). As a result, the dynamic equations of viscous, compressible, elastic fluids are become
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In view of expression 
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     The equations (15) formally coincide with the equations in [5, p. 73]. They differ from (1) only a possibility of definition of physical sense for coefficient at the third term, i.e.   
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     At definition of bulk viscosity for elastic, compressible fluids from common stresses 
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where   
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     For
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where
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- analog of a bulk coefficient of elasticity for any nonconventional, elastic model with shear modulus equal to null.

     Experimental definition of the module 
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i.e. it is necessary to eliminate a viscous component 
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from common stresses 
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let's record the first relationship (18) in the form 
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According to  [7, p. 128; 9, p. 47], a sound velocity in the strained mediums 
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 with an adequate accuracy it is possible to assume as the sound velocity. After derivation (21) this effect is gained. In that case 
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     In view of (22), expression for the bulk viscosity 
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     Thus, dynamic equation of elastic compressible fluids, according to Voight model, with zero elastic shearing stresses, at stationary values 
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 and 
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     Together with continuity equation the equations (24) form a closed-loop system. In such aspect these equations actually imply from resulted in [5, p. 73], if second coefficient of viscosity 
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 in [5] to add sense of bulk viscosity  
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 . Authors [5], apparently, did not know it. Otherwise they would not admit erroneous transition to the equations for incompressible liquid.  They have ignored the term 
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     For badly compressible fluids is 
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 is small value in comparison with other terms of the equations (24). Then the first term in brackets and a continuity equation it is possible to  skip and transfer to the equations of ideally viscous, compressible fluid (9,a).

     From (16) implies, that coefficients (
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) in (1), really, it is possible to interpret as a bulk viscosity 
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 for elastic, compressible fluids. However, it is necessary to consider the following. The requirement 
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 and a defining relation (4) are means inevitable transition to traditional perfect fluid. And it is really, according to last relationship (13), we should to accept a requirement 
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    4. Conclusion
     For an output of the classical equations of theory of elasticity and fluid dynamics the same unclosed equations of motion in stresses are used. Absolutely equal linear relationships between deviators of stresses and strains or velocities of strains are applied to their closure. Therefore, apparently, the final equations should coincide under the shape. In both cases together with a continuity equation they should give a closed-loop system. However, hydrodynamical equations for some reason are considered unclosed. They contain in the explicit shape the additional unknown magnitude -pressure
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. Therefore for closure of dynamic equation of ideally viscous fluid the additional relationship 
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 is used. The mentioned difference, as it has appeared, is bound with following habit. Substitution of defining relation in equations of motion really leads to emersion of magnitude 
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 in the final equations. To eliminate 
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 with direct methods for some reason it is not possible. Possibly, for this reason in theory of elasticity the method of superposition of loading is used. This method allows to eliminate pressure and to determine the latent constant. In fluid dynamics with this constant the known problem of "second viscosity" is linked ". Therefore has appeared false necessity of an additional closing relationship.  Dynamic equation of ideally viscous, compressible fluid for one and  half centuries have remained in the "not completed" state.

     Thus, the conventional point of view, (for example, [6,7,9, etc.]), about necessity of an additional defining relation for closure of dynamic equation of ideally viscous, compressible fluid (Navier-Stokes equations) - actually it is erroneous. The equations of motion in stresses, a continuity equation and defining relation between deviators of stress tensors and velocities of strains (5) represent a closed-loop system. In case of badly compressible fluids (
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) the continuity equation (3), as well as in classical theory of elasticity, can be skipped. Therefore instead of four equations it is possible to use, quite correctly, only three of the same type equations of motion (9). After the solution of such system the passage to the limit at 
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 will lead to solution for incompressible liquid. Such transformation of motion equations of incompressible liquid allows to use numerous effects of classical theory of elasticity for consideration of inertialess fluxions.  

     Pressure 
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 in the equations (1) should be fathomed as an elastic component of complete pressure
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, from which the viscous component 
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 means inevitable transition to perfect fluid. In this case expression 
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 represents a bulk viscosity, and consequently it is necessary to accept 
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. Under such requirement a pressure component 
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 caused by viscous forces too, but not by elastic forces. However such procedure means transition to ideal viscous fluid according to (6,a). It is necessary to note, that for ideal viscous fluid, when transition from (1) to (2,a) is valid, the requirement 
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 in the equations (1) is observed always. Therefore, magnitude 
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 cannot be considered as a bulk viscosity.

     Hydrodynamical equations in the form of (24) is admissible for the exposition of dynamics only any nonconventional visco-elastic fluid (truncated Voight model). This is possible at small shear strains, when elastic shearing stresses are close to zero. Therefore because of such limitations this model must be revised.

     Thus, often used [7, p. 802, etc.]  conjecture   
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 is erroneous. These magnitudes, as well as modules 
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 and 
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 in theory of elasticity, are linked among themselves by a linear dependence of type (16). Besides for incompressible liquid, for example, 
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. Therefore numerous researches of dynamics of viscous gas, especially in university courses [7, p. 801-892], requires radical revising. Researches with use subzero second viscosity [11, etc.], obviously, require revising also. In view of enough argued demonstrations in [1, p. 257; 5, p. 73] magnitude 
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 in the equations (1) at independent 
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 can be only positive. Such inevitable corollary implies from the third formula (13), if 
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     In summary it is necessary to mark the following. Most explicitly the problem of physical sense of second viscosity and pressure 
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 is discussed in the monograph [12, p. 18, 48, 70.] In view of presence of assemblage of judgements and hydrodynamic paradoxes in this motive, this problem is referred to discharge of the open problems. Whether the author has solved completely this problem? Most likely, that has not solved. There is, for example, a conflict with the conjecture that 
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 does not depend on a direction. At such conjecture, for example, it is impossible to consider cases of one-dimensional and two-dimensional loadings. Therefore a problem of       build-up of more correct equations of viscous, elastic compressible fluids, especially for the analysis of its behavior at considerable shift strains, is topical.  
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